Machine Learning Algorithms: मशीन लर्निंग एल्गोरिदम क्या होती है, जानें इनके प्रकार और उपयोग

Safalta Experts Published by: Nikesh Kumar Updated Sat, 25 Dec 2021 04:05 PM IST

उच्च मांग और प्रौद्योगिकी में प्रगति के कारण हाल के वर्षों में मशीन लर्निंग का प्रचलन काफी बढ़ गया है। डेटा से मूल्य बनाने के लिए मशीन लर्निंग की क्षमता ने इसे कई अलग-अलग उद्योगों में व्यवसायों के लिए आकर्षक बना दिया है। अधिकांश मशीन लर्निंग उत्पादों को कुछ ट्यूनिंग और मामूली बदलावों के साथ ऑफ-द-शेल्फ मशीन लर्निंग एल्गोरिदम के साथ डिज़ाइन और कार्यान्वित किया जाता है।

Source: social media


 
 
मशीन लर्निंग एल्गोरिदम की निम्न तीन मुख्य श्रेणियों में बांटा जा सकता है:
 
सुपरवाइज्ड लर्निंग एल्गोरिदम सुविधाओं (स्वतंत्र चर) और एक लेबल (लक्ष्य) के बीच संबंधों को टिप्पणियों का एक सेट दिया गया है। फिर मॉडल का उपयोग सुविधाओं का उपयोग करके नए अवलोकनों के लेबल की भविष्यवाणी करने के लिए किया जाता है।

Free Demo Classes

Register here for Free Demo Classes


 
अनसुपरवाइज्ड लर्निंग एल्गोरिदम  गैर-लेबल वाले डेटा में संरचना को खोजने का प्रयास करते हैं।
 
रीइन्फोर्समेंट लर्निंग एक एक्शन-इनाम सिद्धांत पर आधारित काम करता है। एक एजेंट अपने कार्यों के इनाम की गणना करके एक लक्ष्य तक पहुंचना सीखता है।
 
The 10 लोकप्रिय मशीन लर्निंग एल्गोरिदम-
 
1. लिनियर रिग्रेशन-  लिनियर रिग्रेशन एक सुपरवाइज्ड लर्निंग एल्गोरिदम है और डेटा के लिए एक रैखिक समीकरण फिट करके एक सतत टारगेट वेरिएबल और एक या अधिक फ्री वेरिएबल के बीच संबंधों को मॉडल करने का प्रयास करता है। एक  लिनियर रिग्रेशन एक अच्छा विकल्प होने के लिए, फ्री वेरिएबल (ओं) और टारगेट वेरिएबल के बीच एक रैखिक संबंध होना चाहिए। चरों के बीच संबंधों का पता लगाने के लिए कई उपकरण हैं जैसे स्कैटर प्लॉट और सहसंबंध मैट्रिक्स का उपयोग किया जाता है।

फ्रंट एंड डेवलपर कैसे बनें और इसके लिए कौन से स्किल्स सीखें
 
2. सपोर्ट वेक्टर मशीन-
 
सपोर्ट वेक्टर मशीन (एसवीएम) एक पर्यवेक्षित शिक्षण एल्गोरिथम है और इसका उपयोग ज्यादातर वर्गीकरण कार्यों के लिए किया जाता है लेकिन यह प्रतिगमन कार्यों के लिए भी उपयुक्त है।
एसवीएम एक निर्णय सीमा खींचकर वर्गों को अलग करता है। एसवीएम एल्गोरिदम में निर्णय सीमा को कैसे खींचना या निर्धारित करना सबसे महत्वपूर्ण हिस्सा है। निर्णय सीमा बनाने से पहले, प्रत्येक अवलोकन (या डेटा बिंदु) को n-आयामी स्थान में प्लॉट किया जाता है। "एन" उपयोग की जाने वाली सुविधाओं की संख्या है। उदाहरण के लिए, यदि हम विभिन्न "कोशिकाओं" को वर्गीकृत करने के लिए "लंबाई" और "चौड़ाई" का उपयोग करते हैं, तो अवलोकन 2-आयामी स्थान में प्लॉट किए जाते हैं और निर्णय सीमा एक रेखा होती है। यदि हम 3 विशेषताओं का उपयोग करते हैं, तो निर्णय सीमा 3-आयामी अंतरिक्ष में एक विमान है। यदि हम 3 से अधिक सुविधाओं का उपयोग करते हैं, तो निर्णय सीमा एक हाइपरप्लेन बन जाती है जिसकी कल्पना करना वास्तव में कठिन है।
 
3. डिसीजन ट्री-
 
मशीन लर्निंग में डिसीजन ट्री एल्गोरिथम आज उपयोग में सबसे लोकप्रिय एल्गोरिथम में से एक है; यह एक पर्यवेक्षित शिक्षण एल्गोरिथम है जिसका उपयोग समस्याओं को वर्गीकृत करने के लिए किया जाता है। यह श्रेणीबद्ध और निरंतर आश्रित चर दोनों के लिए अच्छी तरह से वर्गीकृत करता है। इस एल्गोरिथम में, हम सबसे महत्वपूर्ण विशेषताओं / स्वतंत्र चर के आधार पर जनसंख्या को दो या दो से अधिक सजातीय सेटों में विभाजित करते हैं।

2022 में सीखने के लिए सर्वश्रेष्ठ प्रोग्रामिंग भाषाएँ

4. Naive Bayes-
 
Naive Bayes भविष्य कहनेवाला मॉडलिंग के लिए एक सरल लेकिन आश्चर्यजनक रूप से शक्तिशाली एल्गोरिथम है।
 
मॉडल में दो प्रकार की प्रायिकताएं शामिल होती हैं, जिनकी गणना सीधे आपके प्रशिक्षण डेटा से की जा सकती है: प्रत्येक वर्ग की प्रायिकता; और प्रत्येक वर्ग के लिए सशर्त संभाव्यता प्रत्येक x मान दी गई है। एक बार गणना करने के बाद, बेयस प्रमेय का उपयोग करके नए डेटा के लिए भविष्यवाणियां करने के लिए संभाव्यता मॉडल का उपयोग किया जा सकता है।
 
5. SVM (सपोर्ट वेक्टर मशीन) एल्गोरिथम-
 
SVM एल्गोरिथ्म वर्गीकरण एल्गोरिथ्म की एक विधि है जिसमें आप कच्चे डेटा को n-आयामी स्थान में बिंदुओं के रूप में प्लॉट करते हैं (जहाँ n आपके पास सुविधाओं की संख्या है)। प्रत्येक सुविधा का मूल्य तब एक विशेष समन्वय से जुड़ा होता है, जिससे डेटा को वर्गीकृत करना आसान हो जाता है। क्लासिफायर नामक लाइन का उपयोग डेटा को विभाजित करने और उन्हें एक ग्राफ पर प्लॉट करने के लिए किया जा सकता है।

2022 में सर्टिफाइड माइक्रोसॉफ्ट एक्सेल प्रोफेशनल कैसे बनें
 
6. केएनएन-
K-Nearest Neighbours एल्गोरिथम डेटा सेट को प्रशिक्षण सेट और परीक्षण सेट में विभाजित करने के बजाय प्रशिक्षण सेट के रूप में संपूर्ण डेटा सेट का उपयोग करता है।
 
जब एक नए डेटा इंस्टेंस के लिए एक परिणाम की आवश्यकता होती है, तो KNN एल्गोरिथम नए इंस्टेंस के k-निकटतम इंस्टेंस को खोजने के लिए पूरे डेटा सेट के माध्यम से जाता है, या k सबसे नए रिकॉर्ड के समान इंस्टेंस की संख्या, और फिर माध्य आउटपुट करता है परिणामों की (प्रतिगमन समस्या के लिए) या वर्गीकरण समस्या के लिए मोड (सबसे लगातार वर्ग)। k का मान उपयोगकर्ता द्वारा निर्दिष्ट है। उदाहरणों के बीच समानता की गणना यूक्लिडियन दूरी और हैमिंग दूरी जैसे उपायों का उपयोग करके की जाती है।
 
7. K- मींस-
 
यह एक अनुपयोगी शिक्षण एल्गोरिथम है जो क्लस्टरिंग समस्याओं को हल करता है। डेटा सेट को समूहों की एक विशेष संख्या में वर्गीकृत किया जाता है (चलिए उस नंबर को K कहते हैं) इस तरह से कि एक क्लस्टर के भीतर सभी डेटा बिंदु अन्य समूहों के डेटा से समरूप और विषम होते हैं।
K- मींस एल्गोरिथ्म प्रत्येक क्लस्टर के लिए k अंकों की संख्या चुनता है, जिसे सेंट्रोइड्स कहा जाता है। प्रत्येक डेटा बिंदु निकटतम सेंट्रोइड्स के साथ एक क्लस्टर बनाता है, अर्थात, K क्लस्टर। यह अब मौजूदा क्लस्टर सदस्यों के आधार पर नए सेंट्रोइड बनाता है।
इन नए केंद्रों के साथ, प्रत्येक डेटा बिंदु के लिए निकटतम दूरी निर्धारित की जाती है। यह प्रक्रिया तब तक दोहराई जाती है जब तक कि केन्द्रक नहीं बदलते।

एक सफल डेटा एनालिटिक्स करियर कैसे बनाएं

8. लॉजिस्टिक रिग्रेशन-
 
लॉजिस्टिक रिग्रेशन का उपयोग स्वतंत्र चर के एक सेट से असतत मूल्यों (आमतौर पर बाइनरी मान जैसे 0/1) का अनुमान लगाने के लिए किया जाता है। यह डेटा को लॉगिट फ़ंक्शन में फ़िट करके किसी घटना की संभावना की भविष्यवाणी करने में मदद करता है। इसे लॉगिट रिग्रेशन भी कहा जाता है।
 
नीचे सूचीबद्ध इन विधियों का उपयोग अक्सर लॉजिस्टिक रिग्रेशन मॉडल को बेहतर बनाने में मदद के लिए किया जाता है:  बातचीत की शर्तें शामिल करें, तकनीकों को नियमित करें, सुविधाओं को खत्म करें, एक गैर-रैखिक मॉडल का उपयोग करें।

Related Article

Govt establishing modern education system through NEP: President Droupadi Murmu, Read here

Read More

IBPS PO Main Result 2024 out now; Download scorecard till 7 February, Read the steps to check here

Read More

CSIR UGC NET 2024: सीएसआईआर यूजीसी नेट दिसंबर सत्र के लिए संशोधित कार्यक्रम जारी, यहां देखें पूरा शेड्यूल

Read More

UP Police Constable PET: दो चरणों में होगा यूपी पुलिस कांस्टेबल का फिजिकल टेस्ट, इस दिन जारी होंगे प्रवेश पत्र

Read More

UP Board Exam: यूपी बोर्ड इंटर की प्रयोगात्मक परीक्षा कल से होगी शुरू, प्रैक्टिकल से पहले जरूर पढ़ें निर्देश

Read More

BPSC 70th Prelims Marksheet: 70वीं प्रीलिम्स परीक्षा की मार्कशीट वेबसाइट पर अपलोड, ऐसे करें डाउनलोड

Read More

SSC MTS 2024: एसएससी एमटीएस भर्ती के शारीरिक परीक्षण के लिए प्रवेश पत्र जारी, जानें डाउनलोड करने का तरीका

Read More

UP Madarsa Board 2025 Timetable out now; Check the exam dates and steps to download here

Read More

Exam Tips: MPPSC State Service Examination (Prelims) 2025 exam on 16 Feb; Read these tips to succeed here

Read More